

HUSB238

REGISTER INFORMATION

REV. 1.1 Date: 01/14/2021

©2021 Hynetek Semiconductor Co., Ltd. All rights reserved.

www.hynetek.com

CONTENTS

Contents	2
Registers	3
PD_STATUS0	3
PD_STATUS1	4
SRC_PDO_5V	4
SRC_PDO_9V	5
SRC_PDO_12V	5
SRC_PDO_15V	6
SRC_PDO_18V	6
SRC_PDO_20V	7
SRC_PDO	7
GO_COMMAND	7
Important Notice	8

REGISTERS

The HUSB238 has registers to store source capabilities, PD status and configure functions. The registers are accessed by I^2C interface through SDA and SCL pins. The I^2C slave address of the HUSB238 is 0x08.

Table 1 is the summary of the registers.

Table 1. Register Summary

Address	Register Name	Default
0x00	PD_STATUS0	0x00
0x01	PD_STATUS1	0x00
0x02	SRC_PDO_5V	0x00
0x03	SRC_PDO_9V	0x00
0x04	SRC_PDO_12V	0x00
0x05	SRC_PDO_15V	0x00
0x06	SRC_PDO_18V	0x00
0x07	SRC_PDO_20V	0x00
0x08	SRC_PDO	0x00
0x09	GO_COMMAND	0x00

PD_STATUS0

Table 2. PD_STATUS0 (0x00)

Bits	Field Name	Туре	Description	Reset
[7:4]	PD_SRC_VOLTAGE	R	The voltage information when an explicit contract is established. 0000 = Unattached 0001 = PD 5V 0010 = PD 9V 0011 = PD 12V 0100 = PD 15V 0101 = PD 18V 0110 = PD 20V Others = Reserved	0000
[3:0]	PD_SRC_CURRENT	R	The current information when an explicit contract is established. 0000 = 0.5A 0001 = 0.7A 0010 = 1A 0011 = 1.25A 0100 = 1.5A 0101 = 1.75A 0110 = 2A 0111 = 2.25A 1000 = 2.5A 1001 = 2.75A 1010 = 3A 1011 = 3.25A 1101 = 4A 1110 = 4.5A 1111 = 5A	0000

PD_STATUS1

Table 3. PD_STATUS1 (0x01)

Bits	Field Name	Туре	Description	Reset
7	CC_DIR	R	0 = CC1 is connected to CC line or unattached mode 1 = CC2 is connected to CC line	0
6	ATTACH	R	0 = HUSB238 is in unattached mode 1 = HUSB238 is in modes other than unattached mode	0
[5:3]	PD_RESPONSE	R	000 = No response 001 = Success 011 = Invalid command or argument 100 = Command not supported 101 = Transaction fail. No GoodCRC is received after sending Others = Reserved	000
2	5V_VOLTAGE	R	Voltage information of 5V contract 0 = Others 1 = 5V	0
[1:0]	5V_CURRENT	R	Current information of 5V contract 00 = Default current 01 = 1.5A 10 = 2.4A 11 = 3A	00

SRC_PDO_5V

Table 4. SRC_PDO_5V (0x02)

Bits	Field Name	Туре	Description	Reset
7	SRC_5V_DETECT	R	0 = Not detected	0
			1 = Detected	
[6:4]	RESERVED	R	Reserved	000
[3:0]	SRC_5V_CURRENT	R	0000 = 0.5A	0000
			0001 = 0.7A	
			0010 = 1A	
			0011 = 1.25A	
			0100 = 1.5A	
			0101 = 1.75A	
			0110 = 2A	
			0111 = 2.25A	
			1000 = 2.50A	
			1001 = 2.75A	
			1010 = 3A	
			1011 = 3.25A	
			1100 = 3.5A	
			1101 = 4A	
			1110 = 4.5A	
			1111 = 5A	

SRC_PDO_9V

Table 5. SRC_PDO_9V (0x03)

Bits	Field Name	Туре	Description	Reset
7	SRC_9V_DETECT	R	0 = Not detected	0
			1 = Detected	
[6:4]	RESERVED	R	Reserved	000
[3:0]	SRC_9V_CURRENT	R	0000 = 0.5A	0000
			0001 = 0.7A	
			0010 = 1A	
			0011 = 1.25A	
			0100 = 1.5A	
			0101 = 1.75A	
			0110 = 2A	
			0111 = 2.25A	
			1000 = 2.50A	
			1001 = 2.75A	
			1010 = 3A	
			1011 = 3.25A	
			1100 = 3.5A	
			1101 = 4A	
			1110 = 4.5A	
			1111 = 5A	

SRC_PDO_12V

Table 6. SRC_PDO_12V (0x04)

Bits	Field Name	Туре	Description	Reset
7	SRC_12V_DETECT	R	0 = Not detected 1 = Detected	0
[6:4]	RESERVED	R	Reserved	000
[3:0]	SRC_12V_CURRENT	R	$\begin{array}{l} 0000 = 0.5A \\ 0001 = 0.7A \\ 0010 = 1A \\ 0011 = 1.25A \\ 0100 = 1.5A \\ 0101 = 1.75A \\ 0110 = 2A \\ 0111 = 2.25A \\ 1000 = 2.50A \\ 1001 = 2.75A \\ 1001 = 3.25A \\ 1011 = 3.25A \\ 1101 = 4A \\ 1110 = 4.5A \\ 1111 = 5A \end{array}$	0000

SRC_PDO_15V

Table 7. SRC_PDO_15V (0x05)

Bits	Field Name	Туре	Description	Reset
7	SRC_15V_DETECT	R	0 = Not detected	0
			1 = Detected	
[6:4]	RESERVED	R	Reserved	000
[3:0]	SRC_15V_CURRENT	R	0000 = 0.5A	0000
			0001 = 0.7A	
			0010 = 1A	
			0011 = 1.25A	
			0100 = 1.5A	
			0101 = 1.75A	
			0110 = 2A	
			0111 = 2.25A	
			1000 = 2.50A	
			1001 = 2.75A	
			1010 = 3A	
			1011 = 3.25A	
			1100 = 3.5A	
			1101 = 4A	
			1110 = 4.5A	
			1111 = 5A	

SRC_PDO_18V

Table 8. SRC_PDO_18V (0x06)

Bits	Field Name	Туре	Description	Reset
7	SRC_18V_DETECT	R	0 = Not detected	0
			1 = Detected	
[6:4]	RESERVED	R	Reserved	000
[3:0]	SRC_18V_CURRENT	R	0000 = 0.5A	0000
			0001 = 0.7A	
			0010 = 1A	
			0011 = 1.25A	
			0100 = 1.5A	
			0101 = 1.75A	
			0110 = 2A	
			0111 = 2.25A	
			1000 = 2.50A	
			1001 = 2.75A	
			1010 = 3A	
			1011 = 3.25A	
			1100 = 3.5A	
			1101 = 4A	
			1110 = 4.5A	
			1111 = 5A	

SRC_PDO_20V

Table 9. SRC_PDO_20V (0x07)

7 SPC 201/	DETECT R		
		0 = Not detected 1 = Detected	0
[6:4] RESERVE	D R	Reserved	000
[3:0] SRC_20V	CURRENT	$\begin{array}{c} 0000 = 0.5A\\ 0001 = 0.7A\\ 0010 = 1A\\ 0011 = 1.25A\\ 0100 = 1.5A\\ 0101 = 1.75A\\ 0101 = 2A\\ 0111 = 2.25A\\ 1000 = 2.50A\\ 1001 = 2.75A\\ 1001 = 2.75A\\ 1011 = 3.25A\\ 1011 = 3.25A\\ 1101 = 3.5A\\ 1101 = 4A\\ 1110 = 4.5A\\ 1111 = 5A\\ \end{array}$	0000

SRC_PDO

Table 10. SRC_PDO (0x08)

Bits	Field Name	Туре	Description	Reset
[7:4]	PDO_SELECT	RW	0000 = Not selected	0000
			0001 = SRC_PDO_5V	
			0010 = SRC_PDO_9V	
			0011 = SRC_PDO_12V	
			1000 = SRC_PDO_15V	
			1001 = SRC_PDO_18V	
			1010 = SRC_PDO_20V	
			Others = Reserved	
[3:0]	RESERVED	R	Reserved	0000

GO_COMMAND

Table 11. GO_COMMAND (0x09)

Bits	Field Name	Туре	Description	Reset
[7:5]	RESERVED	R	Reserved	000
[4:0]	COMMAND_FUNC	RW	00001 = Requests the PDO set by PDO_SELECT	00000
			00100 = Send out Get_SRC_Cap command	
			10000 = Send out hard reset command	
			Others = Reserved	

IMPORTANT NOTICE

Hynetek Semiconductor Co., Ltd. and its subsidiaries (Hynetek) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Hynetek's terms and conditions of sale supplied at the time of order acknowledgment.

Hynetek warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Hynetek's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Hynetek deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

Hynetek assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using Hynetek components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Hynetek does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which Hynetek components or services are used. Information published by Hynetek regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Hynetek under the patents or other intellectual property of the third party, or a license from Hynetek under the patents or other intellectual property of Hynetek.

Reproduction of significant portions of Hynetek information in Hynetek data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Hynetek is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of Hynetek components or services with statements different from or beyond the parameters stated by Hynetek for that component or service voids all express and any implied warranties for the associated Hynetek component or service and is an unfair and deceptive business practice.

Hynetek is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Hynetek components in its applications, notwithstanding any applications-related information or support that may be provided by Hynetek. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify Hynetek and its representatives against any damages arising out of the use of any Hynetek components in safety-critical applications.

In some cases, Hynetek components may be promoted specifically to facilitate safety-related applications. With such components, Hynetek's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No Hynetek components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those Hynetek components which Hynetek has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of Hynetek components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Hynetek has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, Hynetek will not be responsible for any failure to meet ISO/TS16949.

Please refer to below URL for other products and solutions of Hynetek Semiconductor Co., Ltd.

©2021 Hynetek Semiconductor Co., Ltd. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. www.hynetek.com

